Large deviations for the largest eigenvalue of Rademacher matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large deviations principle for the largest eigenvalue of Wigner matrices without Gaussian tails

We prove a large deviation principle for the largest eigenvalue of Wigner matrices without Gaussian tails, namely such that the distribution tails P(|X1,1| > t) and P(|X1,2| > t) behave like e−bt α and e−atα respectively for some a, b ∈ (0,+∞) and α ∈ (0, 2). The large deviation principle is of speed Nα/2 and with an explicit good rate function depending only on the tail distribution of the ent...

متن کامل

Large Deviations for the Largest Eigenvalue of an Hermitian Brownian Motion

We establish a large deviation principle for the process of the largest eigenvalue of an Hermitian Brownian motion. By a contraction principle, we recover the LDP for the largest eigenvalue of a rank one deformation of the GUE.

متن کامل

Moderate deviations for the eigenvalue counting function of Wigner matrices

We establish a moderate deviation principle (MDP) for the number of eigenvalues of a Wigner matrix in an interval. The proof relies on fine asymptotics of the variance of the eigenvalue counting function of GUEmatrices due to Gustavsson. The extension to certain families of Wigner matrices is based on the Tao and Vu Four Moment Theorem and applies localization results by Erdös, Yau and Yin. Mor...

متن کامل

Tracy-Widom limit for the largest eigenvalue of a large class of complex Wishart matrices

The problem of understanding the limiting behavior of the largest eigenvalue of sample covariance matrices computed from data matrices for which both dimensions are large has recently attracted a lot of attention. In this paper we consider the following type of complex sample covariance matrices. Let X be an n×p matrix, and let its rows be i.i.d NC(0,Σp). We denote byHp the spectral distributio...

متن کامل

Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices.

We present a Coulomb gas method to calculate analytically the probability of rare events where the maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles. The method is general and applies to other related problems, e.g., the joint large deviation func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 2020

ISSN: 0091-1798

DOI: 10.1214/19-aop1398